A long wire has a circular cross-section with radius `a`. The current density in the wire is `J(r) =J_0(a^2-r^2)/a^2` where `r` is the distance from the axis. Calculate the magnetic field at an arbitrary point inside or outside the wire.

Problem: 

A long wire has a circular cross-section with radius `a`. The current density in the wire is `J(r) =J_0(a^2-r^2)/a^2` where `r` is the distance from the axis. Calculate the magnetic field at an arbitrary point inside or outside the wire.

Solution:

For inside the wire`(r<a)`:

The current enclosed by the Ampere's loop is given by 
`I_("enc")=intvecJ.vecds`
or, `I_"enc"=int_0^rJ_0(a^2-r^2)/a^2 2pirdr`
or, `I_"enc"=2piJ_0[r^2/2-r^4/(4a^4)]`
The magnetic field inside the wire is given by 
`ointvecB_(r<a).vecdr=mu_0I_"enc"`
or, `B_(r<a).2pir=mu_0 2piJ_0[r^2/2-r^4/(4a^4)]`
or, `B_(r<a)=mu_0J_0[r/2-r^3/(4a^2)]`[ANS]

For outside the wire `(r>a)`:

The current enclosed by the Ampere's loop is given by
`I_("enc")=intvecJ.vecds`
or, `I_"enc"=int_0^aJ_0(a^2-r^2)/a^2 2pirdr`
or, `I_"enc"=2piJ_0a^2/4`
The magnetic field outside the wire is given by 
`ointvecB_(r>a).vecdr=mu_0I_"enc"`
or, `B_(r>a).2pir=mu_0 2piJ_0a^2/4`
or, `B_(r>a)=(mu_0J_0)/ra^2/4`[ANS]
The magnetic field becomes maximum at `r_0`, so
`(dB_(r<a))/(dr)]_(r=r_0) =0`
or, `(mu_0J_0)/2[1-(3r^2)/(2a^2)]_(r=r_0)=0`
or, `r_0=sqrt(2/3)a`[ANS]

Next Post Previous Post
1 Comments
  • Anonymous
    Anonymous December 20, 2023 at 10:07 PM

    👍

Add Comment
comment url